

Journal of Organometallic Chemistry 642 (2002) 246-258

www.elsevier.com/locate/jorganchem

Vibrational spectroscopic and force field studies of $(\eta^{5}-Cp)ML_{3}$ -type complexes (M = Mn, Re; L = CO, O)

É. Bencze^{a,b}, J. Mink^{a,c,*}, C. Németh^a, W.A. Herrmann^b, B.V. Lokshin^d, F.E. Kühn^{b,*}

^a Institute of Isotope and Surface Chemistry, Chemical Research Center of the Hungarian Academy of Sciences, PO Box 77, H-1525 Budapest, Hungary

^b Anorganisch-chemisches Institut, Technischen Universität München, Lichtenbergstrasse 4, D-85748 Garching, Germany

^c Analytical Chemistry Department, Veszprém University, PO Box 158, H-8201 Veszprém, Hungary

^d A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova Str. 28, 117813 Moscow, Russia

Received 3 August 2001; accepted 28 August 2001

Abstract

High- and low-oxidation state CpML₃-type (M = Mn, Re; L = O, CO) cyclopentadienyl complexes have been investigated by vibrational spectroscopy (FTIR, FT-FIR, FT-Raman) and normal coordinate calculations. The vibrational spectra of CpMn-(CO)₃, CpRe(CO)₃ complexes were revised and reinterpreted. For the oxo-complexes and Cp*-carbonyl compounds, Cp*Mn(CO)₃ and Cp*Re(CO)₃, a complete spectral assignment is proposed. The results of the normal coordinate analysis are in good agreement with the spectral evidence. The vibrational spectroscopic findings help to explain earlier observations, e.g. the significantly lower stability of CpReO₃ in comparison to Cp*ReO₃. Characteristic force constants have been determined for Cp and Cp* ligands. A method is described for estimating an approximate force constant for the metal cyclopentadienyl (Cp) ligand bond stretch in half sandwich type of complexes, based on the use of an effective 'spectroscopic' mass of the Cp-ligand. © 2002 Elsevier Science B.V. All rights reserved.

Keywords: Cyclopentadienyl; Manganese; Oxo complexes; Rhenium; Vibrational spectroscopy

1. Introduction

High-oxidation state organometallic oxides [1] have been studied intensively, especially since the organorhenium(VII) basic complexes CH_3ReO_3 [1–4] and (η^5 - C_5Me_5)ReO₃ (Me = CH₃) [1,5] were first reported. Today, a wide variety of these complexes exist [1,6–8]. In addition to the knowledge on the preparation of these compounds, their structure and chemical behavior, and specific catalytic properties, there is considerable interest in further studying the vibrational spectroscopic and bonding properties of these and similar compounds.

Considerable research has been focused on the vibrational properties of cyclopentadienyl (Cp) complexes of low-oxidation state metals [9]. In recent years, density functional theory (DFT) calculations were proven to give reliable vibrational IR frequencies and intensities. Our recent DFT calculations and experimental (IR, Raman) re-investigations of Cp⁻, Cp*- (Cp* = pentamethylcyclopentadienyl) and the CpM and Cp*M (M = Li, Na, K) systems [10] led to considerable modification of the generally accepted assignment of Cpring vibrations [11]. Thus, based on these results and the recent results of DFT calculations on Cp⁻, CpLi and Cp_2Fe species [12], we concluded that vibrational re-investigation of some well-known molecules, like $C_5H_5Mn(CO)_3$, $C_5D_5Mn(CO)_3$ [13], $CpRe(CO)_3$ [14] is necessary. To our knowledge, no detailed vibrational data, no Raman polarization measurements have been reported of high-oxidation state organometallic oxides, such as CpReO₃ and Cp*ReO₃. Moreover, there are

^{*} Corresponding authors. Tel.: + 49-89-289-13080; fax: + 49-89-289-13473 (F.E.K.). Tel.: + 36-1-329-2551; fax: + 36-1-392-2551 (J.M.).

E-mail addresses: fritz.kuehn@ch.tum.de (F.E. Kühn), mink@ iserv.iki.kfk.hu (J. Mink).

very few or no vibrational experimental reports on Cp* complexes, such as Cp*Re(CO)₃ [15] and Cp*Mn(CO)₃.

We have re-recorded the spectra of some complexes and report new vibrational data of others not previously studied. This report is an attempt to rationalize the different assignments of the Cp ring vibrations and establish a reliable assignment of the Cp* ring vibrations. We have compared the spectra of Cp complexes with those of Cp* derivatives and analyzed the spectral differences between these two types of compounds.

Normal coordinate analysis (NCA) and force constant calculation of organometallic compounds is not trivial. It is extremely difficult in the case of CpML₃type molecules, where two molecular moieties are connected with different local symmetry. If one considers the real symmetry of the whole CpML₃-type compound, definition of some internal coordinates (e.g. the metal-ring symmetric and asymmetric ('tilt') stretching or the deformations of the ML₃ fragment) becomes complicated. There are two different approaches to the inclusion of the complete ring–ligand coordinate into the force field. One is to introduce five metal–carbon stretching coordinates, whereas the other is based on introduction of a 'dummy' atom in the middle of the Cp-ring for modeling the metal-ligand stretching coordinate. In the second case, the Cp 'tilt' motions can be expressed on the basis of the moments of inertia of the Cp ring by introducing a special internal coordinate. For sandwich-type Cp₂M [16,17] and half sandwichtype CpM [10] complexes, the first method has been used. Our experience in force constant calculations of CpML_n-type complexes has found that the second method is preferable. This allows the easy introduction of deformational internal coordinates for the ML_n moiety. Evaluating the applicability of the 'dummy' atom model is also examined in this present paper. Relatively few approximate force field calculations have been reported in the literature, e.g. energy factored CO stretching force constants were obtained for $CpMn(CO)_3$ [18] and $CpRe(CO)_3$ [19], and a simplified calculation has been performed for CpReO₃ and Cp*ReO₃ [20] species. However, 'extensive' force constant calculations for these systems are not available.

Herein, we report the 'complete' force constant calculations and vibrational analysis of the molecules CpMn-(CO)₃ and its deuterated derivative, Cp*Mn(CO)₃, CpRe(CO)₃, Cp*Re(CO)₃, CpReO₃, and Cp*ReO₃ with a view to understanding their structural and bonding properties.

Table 1

Experimental and calculated (NCA) normal vibrations (cm⁻¹) of CpMn(CO)₃ and C₅D₅Mn(CO)₃ complexes

Point	group	,		C ₅ H ₅ Mn(CO) ₃		C ₅ D ₅ Mn(CO) ₃		Assignment	PED (%) ^b
C_s	C_{5v}	C_{3v}	Number	Experimental ^a	Calculated	Experimental ^a	Calculated	_	
A'	a ₁		1	3125	3123.2	2349	2351.1	v(CH)	98r + 2R
\mathbf{A}'	a_1		2	1117	1117.1	1051	1049.7	v(CC)	97R + 3r
\mathbf{A}'	a_1		3	837	836	613	614.0	γ(CH)	100ρ
A''	a_2		4	1267	1261.4	980	991.6	β (CH)	100 <i>β</i>
\mathbf{A}'	e_1		5a	3109	3113.7	2340	2336.1	v(CH)	$98r + 1\alpha + 1R$
\mathbf{A}'	e ₁		6a	1425	1430.5	1260	1260.0	v(CC)	$70R + 27\beta + 3r$
\mathbf{A}'	e ₁		7a	1010	1014.1	775	776.0	β (CH)	$74\beta + 18R + 7\alpha + 1r$
\mathbf{A}'	e ₁		8a	842	846.1	685	680.5	γ(CH)	$94\rho + 6\tau$
\mathbf{A}'	e ₂		9a	3120	3118.8	2340	2340.5	v(CH)	98r + 2R
\mathbf{A}'	e_2		10a	1364	1366.7	1311	1312.2	v(CC)	$80R + 14\alpha + 3\beta + 3r$
\mathbf{A}'	e ₂		11a	1065	1068.1	832	820.4	β (CH)	$55\beta + 44R + 1r$
\mathbf{A}'	e ₂		12a	930	928.1	853	851.7	$\alpha(CCC)$	$80\alpha + 14R + 6\beta$
\mathbf{A}'	e_2		13a	922	920.7	720	722.4	γ(CH)	$91\rho + 9\chi$
\mathbf{A}'	e ₂		14a	616	621.9	560	550.6	$\delta(\text{CCC})$	$79\chi + 21\rho$
\mathbf{A}'		a_1	15	2027	2025.0	2023	2025.0	$v_{\rm s}({\rm CO})$	94D + 6d
\mathbf{A}'		e	20a	1944	1942.1	1940	1942.1	$v_{\rm as}(\rm CO)$	94D + 6d
\mathbf{A}'		a_1	16	667	666.8	663	666.2	δ (MnCO)	$69\varepsilon + 13\omega + 12\rho + 6d$
$A^{\prime\prime}$		a_2	19	410	400.8	400	400.2	δ (MnCO)	$100\varepsilon'$
\mathbf{A}'		e	21a	635	632.2	629	632.0	δ (MnCO)	$50\varepsilon' + 36d + 12\gamma + 2\omega$
\mathbf{A}'		e	22a	542	541.1	540	541.1	δ (MnCO)	$91\varepsilon + 5\omega + 3d + 1\gamma$
\mathbf{A}'		a_1	17	493	495.7	494	493.2	$v_{\rm s}({\rm MnC})$	$41d + 35\rho + 23\varepsilon + 1D$
\mathbf{A}'		e	23a	491	486.3	488	486.3	$v_{as}(MnC)$	$55d + 41\varepsilon' + 3\gamma$
\mathbf{A}'		e	24a	111	112.9	111	112.3	δ (CMnC)	$44\gamma + 39\omega + 7d + 6\varepsilon + 5\varepsilon'$
\mathbf{A}'		a_1	18	104	106.1	104	105.4	$\delta(CMnC)$	$84\omega\gamma + 13\varepsilon + 2\rho + 1d$
\mathbf{A}'		e	25a	104	95.1	104	94.4	$\delta(CMnC)$	$47\omega + 41\gamma + 6d + 6\varepsilon'$
\mathbf{A}'	a_1		26	347	345.8	337	341.6	$v_{\rm s}({\rm MnCp})$	51S + 48d + 1D
A′	e_1		27a	372	380.9	362	356.4	$v_{as}(MnCp)$	$98\tau + 2\rho$

^a Experimental frequencies from Ref. [13].

^b For internal coordinates notation see Fig. 1.

Table 2

Experimental IR and Raman frequencies (cm⁻¹) of Cp*Mn(CO)₃

	IR	I	Raman		Assignment
Solid	Solution (CH ₂ Cl ₂)	Solid	Solution (CH ₂ Cl ₂)	2	, rootRimment
2963 m	2963 w	2965 ms	2966 w. dn	} e1	ν_{as} (CH ₃)
2922 hs	2917 h wm	2925 vs	2921 m. n	-	
2863 wm	2963 w sh	_/ <u>_</u> / TO	->=+ m, p	a_1	$\nu_{s}\left(CH_{3}\right)$
2005 mm	2046 w.m			-	
2004 vvs	2003 vvs	1994 s	2001 vs. p	a	v _e (CO)
2001110	2000 110	1930 vvs	, r	-1	-3()
1910 vvs	1914 vvs	1907 vvs	1917 vs. dp	e	\mathbf{v}_{∞} (CO)
1485 wm	1484 w	1484 sh	··· / 1		
1469 sh		1470 wm) e	δ _{as} (CH ₃)
1451 wm	1454 w	1449 m	1454 m, dp	J	
1427 wm	1428 w	1428 m	1428 s, p	aı	v(CC)+v(C-CH ₃)
1409 sh		1416 vw	-	e ₁	v(CC)+v(C-CH ₃)
1382 s	1386 m	1384 w	1385 wm, p	31	δ _s (CH ₃)
		1369 w	1373 sh. dp	e2	$v(CC)+v(C-CH_3)$
			1336 w. p		
1262 m	1265 m				
1214 vw	1205 11				
1163 vyw					
1098 wm					
1073 wm	1073 w		1071 vw, dp	\int^{c_2}	v(CC)+v(C-CH ₃),
				Ĺe	$\rho_r(CH_3)$
1030 sm	1033 wm	1030 w	1035 w. p	e	$\rho_r(CH_3)$
914 vvw	895 vw				
876 vw					
803 b.m				e ₁	$v(CC)+v(C-CH_3)$
674 s	676 s			\mathbf{a}_1	ð(Mn-CO)
639 vs	640 vs		643 wm	$\left\{ \begin{array}{c} e_2 \\ e \end{array} \right.$	δ(CCC), δ(Mn-CO)
590 sh		594 m	593 s, p	$\mathbf{a}_{\mathbf{i}}$	v(CC)+v(C-CH ₃)
			590 sh, dp		
547 sh	545 sh	550 wm	549 m, dp	a ₂	β(C-CH₃)
538 sm	539 sm	545 sh		e	δ(Mn-CO),
503 m	508 wm	505 s	501 vs, p	a_1	v _s (Mn-CO)
498 m				e	$v_{as}(Mn-CO)$
469 w					
43 8 w,m		441 w	445 w, dp	e ₂	a(CCC)
	389 vs	392 vvs, p		\mathbf{a}_1	vs(Mn-Cp*)
386 w				a ₂	δ(Mn-CO)
		300 w			
292 m		286 w		e ₁	vas(Mn-Cp*)
201 s,b		210 s	210 s, dp	\mathbf{e}_1	β(C-CH ₃)
			205 s, p	c &	γ(C-CH ₃),
			· •	e,	β(C-CH ₃)
		145 w		E1	γ(C-CH ₂)
		124 e	133 m dn	9,	δ(CMnC)
109			m, up	м, С. А.	v(C_CH_)
107 W					A(CMpC)
92					J(CHIIC)
63 VW				Lattic	e modes
62 VW				L	

b, broad; s, strong; w, weak; m, medium; vs, very strong; vw, very weak; vvw, very-very weak; wm, weak-medium; ms, medium-strong; sh, shoulder; p, polarized; dp, depolarized.

2. Experimental

Complexes $CpMn(CO)_3$, $CpRe(CO)_3$, $Cp^*Re(CO)_3$ are commercially available from Strem. $Cp^*Mn(CO)_3$ [21], $CpReO_3$ [22,23a] and Cp^*ReO_3 [24] were synthesized using established literature procedures.

The CpReO₃ complex is sensitive to light and elevated temperatures [23b]. All manipulations were performed using Schlenk procedures or using glove box techniques (purged with dry N_2).

Mid-IR spectra of the complexes were recorded with a BIO-RAD FTS-60A spectrometer, both in solid (KBr pellets) and solution (CH₂Cl₂) phase. Far-IR measurements were performed on a BIO-RAD FTS-40 or FTS-175 systems as Nujol mulls or polyethylene pellets, using a 6- μ m Mylar beamsplitter. Raman spectra were measured with a BIO-RAD Digilab dedicated FT-Raman spectrometer using the near infrared 1064 nm excitation from a Nd:YAG laser. Raman polarization measurements of solutions (CH₂Cl₂) were also carried out.

3. Results and discussion

3.1. Vibrational spectra

FTIR and FT-Raman spectra of CpMn(CO)₃ and its deuterated derivative have been measured and tentatively assigned by Parker [13]. The local symmetry approach i.e., C_{5v} point group for CpM moiety is a reasonable approximation [13]. From the 14 fundamental modes of the Cp ring, 12 frequencies are in agreement with our assignments. In the e₂ species for the v_{11} vibration, we suggest 1065 cm⁻¹ as C–H in-plane-deformation instead of the 1215 cm⁻¹ band. For the v_{13} C–H out-of-plane deformation vibration, the 922 cm⁻¹ band shows better agreement with the calculated frequency [10] than Parker's assignment (1065 cm⁻¹) [13].

We have obtained more discrepancies in $C_5D_5Mn(CO)_3$ vibrations. The medium Raman band at 1311 cm⁻¹ was assigned to the v_{10} (e₂) vibration, instead of the band at 1260 cm⁻¹ [13]. Frequencies for the e_2 species, 1311, 832, 853, and 720 cm⁻¹ were assigned to v_{10} , v_{11} , v_{12} , and v_{13} vibrations, respectively. The tentative assignments suggested by Parker were 1260, 1094, 720, and 850 cm⁻¹ for the same series of the fundamental vibrations [13]. Further confirmation of our assignments was obtained from the Teller-Raleigh product rule. The theoretical product ratio of 0.403 is in satisfactory agreement with the observed 0.446. The previous assignments [13] give a product ratio of 0.340 more different from the theoretical value. Vibrations due to the $-Mn(CO)_3$ moiety can be unambiguously assigned. These show no sensitivity to deuterium substitution of the Cp-ring. The experimental

and calculated fundamental frequencies, their assignments and potential energy distribution are presented in Table 1.

Table 2 reports the experimental fundamental frequencies of $Cp*Mn(CO)_3$ and the tentative assignment proposed on the basis of our previous work [10]. The complex was measured both in solid and solution (CH_2Cl_2) phases, including Raman polarization measurements, too. Comparing the $-Mn(CO)_3$ group frequencies in $CpMn(CO)_3$ and $Cp*Mn(CO)_3$ compounds, it can be observed that these frequencies are not showing considerable sensitivity to the ligand exchange.

Our assignment of the CpRe(CO)₃ complex is in good agreement with the previous work of Lokshin et al. [14] (see Table 3). However, based on our earlier results [10], we suggest some modifications of the ring vibrations. We assigned the in-plane C–H deformations at 1006 cm⁻¹ (e₁) and 1061 cm⁻¹ (e₂), respectively, instead of 1198 and 1006 cm⁻¹. We have also re-assigned the C–H out-of-plane vibration (e₂) to 912 instead of 1061 cm⁻¹. The Raman spectra highlighted a weak band at 598 cm⁻¹, which we interpreted as being the ring out-of-plane torsional mode contrary to Lokshin's assignment of 380 cm⁻¹, which we believe to be too low for this vibration [10]. Only the FTIR spectrum $(4000-200 \text{ cm}^{-1})$ is available for the Cp*Re(CO)₃ [15]. The assignment of the vibrations is not complete and in some cases the vibrations are interpreted wrongly, e.g. the ring breathing at 1085 cm⁻¹ and the asymmetric Re–Cp* stretching at 380 cm⁻¹ which appears as polarized band in our Raman measurements. Table 4 presents the vibrational spectra and our tentative assignment for the Cp*Re(CO)₃ molecule.

IR measurements of CpReO₃ [22] and Cp*ReO₃ [20], both in solid and solution (CH₂Cl₂) phase, allowed the identification of the Re=O vibrations only. The CpReO₃ complex is a poor Raman scatterer and the fluorescence complicates analysis of the spectra. Also, it is insoluble in most common spectroscopic solvents (CCl₄, CS₂, CH₂Cl₂, acetonitrile, benzene). Accordingly, our assignment (Table 5) is based on IR and Raman measurements of the compound in its solid state. The Cp*ReO₃ spectra were recorded both in solid and solution (CH₂Cl₂) phase and the assignment is presented in Table 4, together with the tricarbonyl analogue molecule, Cp*Re(CO)₃.

Considering the IR and Raman band intensities, the activity of the vibrations, the Raman polarization measurements, and the previous work on similar complexes

Table 3

Experimental and calculated (NCA) fundamental frequencies (cm⁻¹) of CpRe(CO)₃ complex

Point g	roup			CpRe(CO) ₃		Assignment	PED (%) ^a
Cs	C_{5v}	C_{3v}	Number	Experimental	Calculated		
A'	a_1		1	3125	3123.9	v(CH)	98r + 2R
A′	a ₁		2	1106	1102.6	v(CC)	93R + 7r
A′	a ₁		3	826	826.1	γ (CH)	100ρ
A″	a ₂		4	1225	1231.4	β (CH)	100β
A′	e ₁		5a	3066	3068.2	v(CH)	$98r + 1\alpha + 1R$
A′	e ₁		6a	1421	1420.9	v(CC)	$68R + 27\beta + 5r$
A′	e ₁		7a	1006	1007.1	β (CH)	$81\beta + 14R + 5\alpha$
A′	e ₁		8a	839	838.0	γ (CH)	$95\rho + 5\tau$
A′	e ₂		9a	3105	3104.5	v(CH)	98r + 2R
A′	e ₂		10a	1354	1353.6	v(CC)	$84R+12\alpha+1\beta+1r$
A′	e ₂		11a	1061	1065.4	β (CH)	$54\beta + 45R + 1r$
A′	e ₂		12a	932	930.3	$\alpha(CCC)$	$88\alpha + 8R + 3\beta$
A′	e ₂		13a	912	913.0	γ(CH)	$92\rho + 8\chi$
A′	e ₂		14a	598	597.4	$\delta(\text{CCC})$	$76\chi + 24\rho$
A′	_	a_1	15	2025	2025.1	$v_{\rm s}({\rm CO})$	93D + 7d
A′		e	20a	1926	1926.1	$v_{as}(CO)$	93D + 7d
A′		a_1	16	610	610.3	δ (ReCO)	$78\varepsilon + 18\omega + 2\rho + 1d$
A″		a ₂	19	378	380.1	δ (ReCO)	100ε'
A′		e	21a	600	601.0	δ (ReCO)	$75\varepsilon' + 15d + 7\gamma + 3\omega$
A′		e	22a	513	513.2	δ (ReCO)	$72\varepsilon + 9\omega + 4d + 1\gamma$
A′		a ₁	17	503	501.8	$v_{\rm s}({\rm ReC})$	$81d + 10\rho + 5\varepsilon + 4D$
A′		e	23a	509	507.7	$v_{as}(\text{ReC})$	$67d + 18\varepsilon' + 14\gamma$
A′		e	24a	120	120.1	δ (CReC)	$82\gamma + 12\varepsilon' + 3\varepsilon + 2d$
A'		a_1	18	110	112.3	δ (CReC)	$78\omega\gamma + 21\varepsilon + 1\rho$
A′		e	25a	76	83.1	δ (CReC)	$96\omega + 4\varepsilon$
\mathbf{A}'	a_1		26	328	327.3	$v_{s}(\text{ReCp})$	$77S + 22d + 1\varepsilon$
A'	e ₁		27a	352	352.0	$v_{\rm as}({\rm ReCp})$	100τ

^a For internal coordinates notation, see Fig. 1.

[10,13,14], our assignments seem to be justified. Two strongly polarized bands are observed in the Cp* derivatives' Raman spectra analogous to those of the alkali metal Cp* complexes [10]. These bands are due to the strong coupling of the two symmetric skeletal modes of the Cp ring and ring-methyl symmetric stretches and they are split strongly with a separation of ca. 800 cm⁻¹ (ca. 1430 and 590 cm⁻¹). It is noteworthy that the Cp complexes exhibit the M–Cp symmetric

Table 4 Experimental frequencies (cm^{-1}) of $Cp^*Re(CO)_3$ and Cp^*ReO_3

stretchings at lower wavenumbers than the asymmetric ones in contrast with the Cp* complexes. Also, the $M-Cp^*$ symmetric stretchings occur at higher frequencies than the M-Cp ones, suggesting that the $M-Cp^*$ bonds are stronger than M-Cp.

The ML_3 substituents do not show a profound influence on the intra-ring vibrational frequencies. Thus, these frequencies are transferable for different complexes.

Cp*Re(CC))3			Cp*ReO ₃					
IR		Raman		IR		Raman		Assig	gnment
Solid	Solution	Solid	Solution	Solid	Solution	Solid	Solution		
	(CH_2Cl_2)		(CH ₂ Cl ₂)		(CH_2Cl_2)		(CH_2Cl_2)		
				2999 vw	2996 w	2998 m			
2985 w	2984 w	2986 wm	2986 wm, dp	2980 vw	2985 w	2980 sh		e	$v_{as}(CH_3)$
2966 w	2965 vw	2967 m	2967 m, dp	2961 w	2963 vw	2962 m		J	
2926 w	2918 w	2925 s	2922 vs, p	2923 wm	2924 m	2925 s	2926 vs, p	L.	<u>м (СН</u> а)
		2874 sh	2876 w, dp	2866 vw	2867 vw	2869 wm		ſª	vs(CII3)
2861 vw	2861 vvw			2855 vw		2852 wm			
		2804 vw	2806 vw						
		2753 vw	2759 w, p					a_1	2 × 1388
		2727 vw	2732 w, p					a ₁	2 × 1370
1999 vvs	2007 vvs	1995 s	2007 s, p					a_1	v _s (CO)
1989 sh		1987 sh							
		1921 vvs							
1905 vvs	1909 vvs		1909 s, dp					e	$\nu_{as}(CO)$
1897 vvs		1897 vvs							
1866 m		1 8 66 w							
				1503 m	1492 w	1501 wm		e	$\delta_{as}(CH_3)$
1483 wm	1482 w	1485 sh	1487 w	1483 sh		1481 sh			
1472 w	1468 sh	1466 wm	1466 w, dp	1473 w		1470 sh		c	δ _{as} (CH ₃)
1453 wm	1454 wm	1449 m	1450 w, dp		1450 w	1457 wm		e ₁	$v(CC)+v(C-CH_3)$
1425 w	1426 m	1419 m	1421 m, p	1439 s	1431 vw	1430 m	1429 s, p	a _l	$v(CC)+v(C-CH_3)$
1405 w		1406 w	1408 sh		1415 vvw	1407 vw		e ₂	$\nu(CC)+\nu(C-CH_3)$
1384 m	1387 s	1383 w	1388 w, dp	1380 m	1380 ms		1385 w, p	ai	$\delta_s(CH_3)$
		1367 w	1370 w, dp	1372 s		1371 m			
				1361 s	1366 sh	1360 w	1366 w, dp	e,	v(CC)+v(C-CH ₃)
1160 vw		115 8 v w	1159 vvw	1167 vvw		1166 vw			
1108 w		1086 vw		1105 vvw		1099 vvw			
1072 w	1073 w	1065 vw		1073 w	1073 vw	1073 w	1073 vw, dp	c,	v(CC)+v(C-CH ₃), p _r (CH ₃)
1033 wm	1035 wm	1031 w	1035 w, p	1024 m	1027 w	1021 m	1027 m. p	a _l , e	ρ _τ (CH ₃)
952 vvw		951 vw		962 vvw	955 vw	961 vvw			
				910 vs	919 vs	905 vvs	918 vvs, p	aı	$v_s(\text{ReO}_3)$
				886 vvs	886 vvs	887 vs	886 s. dp	е	$v_{as}(ReO_3)$
						873 vs			
		878 vvw	879 vw						
				845 vvw	833 vw		845 vvw		
798 vvw		796 vvw	795 vvw	803 m	802 m	801 w	8 04 w, dp	e _i	v(CC)+v(C-CH ₃)
630 sh		632 w	634 vw. dp	612 w		610 w		e ₂	δ(CCC)
0.50 50		052 W	054 vw, up	012 W		010 W		C2	

Table 4 (Continued)

611 m	615 s	608 sh	615 wm					aı	δ(ReCO)
594 m	595 s	589 m	587 s, p	594 vw	590 vvw	594 s	591 vs. p	a ₁ , e	ν(CC)+ν(C-CH ₃), δ(ReCO)
545 w		543 wm	544 wm, dp	547 w	544 vvw	544 m	545 m, dp	a ₂	β(C-CH ₃)
513 s	515 vs		515 sh, p					e	δ(ReCO)
508 sh	507 sh	501 vs	507 vs. p					a_1	v(ReCO)
			495 sh, dp	491 vw				e	δ(ReCO)
430 m	433 m	435 w	439 w, dp					e_2	α(CCC)
						429 sh			
				420 m	418 vw	420 w	422 w, dp	e_2	α(CCC)
				396 s	400 s	395 vs	400 vs, p	a ₁	$\delta_{s}(\text{ReO}_{3})$
378 wm	380 w	377 wm	381 wm, p					a_1, a_2	ν _s (ReCp*), δ(ReCO)
						353 s	355 m, p	a_1	v _s (ReCp*)
				337 m	340 m	337 s	340 m, dp	e	$\nu_{as}(ReCp^{*})$
		293 w		297 vvw		296 vw		e	pr(ReO ₃)
		281 w	280 w					e	$v_{as}(ReCp^*)$
				205 m	201 w	205 w	204 w	c, e ₁	$\delta_{as}(ReO_3), \beta(C-CH_3)$
192 w	190 w							e ₁	β(C-CH ₃)
		185 s	182 m, dp					c ₂	β(C-CH ₃)
				182 m		183 w		a ₁ , e ₂	γ(C-CH ₃), β(C-CH ₃)
172 wm	171 w	175 sh	173 s, p					a_1, e_1	γ(C-CH ₃)
				161 wm	166 vw	164 vs	160 w	e	γ(C-CH ₃)
	144 w	144 w						e	δ(CReC)
	115 w								δ(CReC)
			104 s, dp					a1, e	δ(CReC)
			76 vw, dp					Lattice	e mode

s, strong; w, weak; m, medium; vs, very strong; vw, very weak; vvw, very-very weak; wm, weak-medium; ms, medium-strong; p, polarized; dp, depolarized.

3.2. Normal coordinate analysis (NCA)

NCA of the title complexes is not trivial and, therefore, is not carried out routinely. In CpML₃ type complexes, two molecular fragments are connected with different local symmetries. The –CpM moiety shows C_{5v} symmetry, while the $-ML_3$ (L = O, CO) is of C_{3v} symmetry. In order to carry out a 'complete' normal coordinate analysis, we have introduced a 'dummy' atom in the geometrical center of the Cp ring (see also Section 1). This makes it possible to describe in a simpler mode the Cp-M-L₃ skeletal deformations. However, it should be emphasized that this is not suitable for defining the ring 'tilt'. We have already mentioned that for this type of internal coordinate system, the ring 'tilt' can be expressed as the inverse of the moments of inertia of the Cp ligand. The internal coordinates are presented in Fig. 1. The 'tilt' is noted as a librational mode, τ . For the carbonyl complexes, in addition to those coordinates which can be seen in Fig. 1, we have introduced three more stretchings (denoted D for C=O), and six deformation coordinates for Re-C-O groups,

namely three linear bendings (ε) and three more linear bendings (ε '), perpendicular to the ε coordinates. In the case of Cp* molecules, the methyl groups were considered to be point masses.

Thirty-five normal vibrations were calculated for the trioxo complexes, whereas 44 were calculated for the tricarbonyl complexes. In all cases, the ring torsion

Fig. 1. Internal coordinate notation for Cp(Cp*)ML₃-type derivatives. Notation: R, CC stretching; r, CH stretching; S, ReD stretching; D, ReL stretching; α , CCC bending; β , CCH bending; ω , LReD bending; γ , LReL bending; χ , out-of-plane ring torsion; ρ , out-ofplane bending; τ , tilt.

Table 5 Experimental (IR, Raman) frequencies of CpReO₃ (cm⁻¹)

CpR	eO ₃			
IR		Raman	Assignm	ent
3100	vs	3103 s	a ₁	ν(CH)
		3092 w	e ₂	$\nu(CH)$
3075	sh			
3025	VVW		e ₁	$\nu(CH)$
3015	VVW			
2964	W			
2924	W			
2850	VW			
2775	W			
1429	VS	1419 m	e_1	v(CC)
1400	sh	1392 wm		
		1329 vvw	e ₂	v(CC)
1261	m		a ₂	β (CH)
		1243 vvw		
		1230 w		
1180	wm	1182 vw		
1158	VW	1132 vvw		
1094	m			
1080	m	1075 m	a_1	v(CC)
		1049 w	e ₂	γ (CH)
1017	VS	1018 vw	e ₁	β (CH)
958	VW	957 vvw		
		938 w	e ₂	$\alpha(CCC)$
926	VS	914 vvs	a_1	$v_{\rm s}({\rm ReO}_3)$
		897 m	e ₂	γ (CH)
886	VVS	885 m	e ₂	$v_{as}(\text{ReO}_3)$
871	sh	875 m		
855	VS	856 vw	e ₁	γ (CH)
835	sh	835 w	a_1	γ (CH)
801	W	793 vvw		
668	W			
589	m		e ₂	$\delta(\text{CCC})$
470	W			
419	VVW			
384	W	386 w	a_1	$\delta_{\rm s}({\rm ReO}_3)$
		375 m	e ₁	$v_{as}(\text{ReCp})$
351	m			
345	m	343 s		
		318 vs	a_1	$v_{\rm s}({\rm ReCp})$
276	W	277 sh	e	$\rho_{\rm r}({\rm ReO}_3)$
		270 m		
		237 vvw		
		218 w		
193	m		e	$\delta_{\rm as}({\rm ReO}_3)$
		185 m		

s, strong; w, weak; m, medium; vs, very strong; vw, very weak; vvw, very-very weak; wm, weak-medium; ms, medium-strong; sh, shoulder.

coordinate was neglected, assuming free rotation of the ring. The molecules belong to the C_s point group, but vibrational assignments were made considering their local symmetries, C_{5v} and C_{3v} .

The irreducible representation is 20A' + 15A'' for $Cp(Cp^*)ReO_3$, and 25A' + 19A'' for the $Cp(Cp^*)$ - $M(CO)_3$ (M = Mn, Re) complexes. If we consider the

molecules as having planar symmetry (C_s) , then 20 or 25 polarized bands should appear in the Raman spectra for oxo- or the tricarbonyl complexes. In reality, only eight polarized bands appear in the spectra of tricarbonyl complexes. This is in good agreement with that expected on applying the local symmetry concept of C_{5v} and C_{3v} point groups. This experimental evidence justifies the introduction of special symmetry coordinates. It is also necessary to introduce special coordinates for the doubly degenerate ring 'tilt' in addition to implementing the local symmetries. These symmetry coordinates are presented in Table 6.

Geometrical parameters were taken from the literature. CpMn(CO)₃ [25], CpRe(CO)₃ [26], CpReO₃ [23], Cp*Mn(CO)₃ [27], Cp*Re(CO)₃ [28], Cp*ReO₃ [20]. The starting force fields were also adopted from the literature: Ref. [10] for the Cp, Cp* rings, Refs. [14-20] from approximate calculations for the -ML₃ moiety. These results were refined to the experimental frequencies of the CpMn(CO)₃ complex, for which frequencies for the deuterated derivative are also available. Thus, a reliable force field for $CpMn(CO)_3$ compound was calculated. The force constants reported for the $CpMn(CO)_3$ molecule were considered as initial force fields for the other derivatives and were refined for the corresponding experimental frequencies. Tables 1, 3, 7-9 outline the results (calculated fundamental frequencies) obtained for complexes CpMn(CO)₃, CpRe(CO)₃, Cp*Mn(CO)₃, CpReO₃ and Cp*ReO₃, respectively.

It was found that none of the vibrations, which belong to degenerate symmetry species (e, e_1 , e_2) show any splitting either in calculations or in experimental observations. Therefore, frequencies of vibrations belonging to A" species (5b-27b) are practically identical to those of 5a-27a, with the same potential energy distributions (PED). Hence, these vibrations are omitted from the tables. Accordingly, in Tables 1, 3, 7-9 only the A' components of the degenerate vibrations are presented together with those of the asymmetric unpaired vibrations (e.g. v_4 (β (CH)) and v_{19} (δ (MCO)) in the case of tricarbonyl complexes, and v_4 (β (CH)) for trioxo derivatives) which appear only in symmetry block A".

The frequencies calculated are found to be in very good agreement with the experimental observations (Table 10). The PED values indicate that the in-plane vibrations of the Cp ring are coupled strongly in both Cp and Cp* rings. In the latter case, the degree of coupling is considerably higher. Furthermore, in Cp* molecules, considerable interaction can be observed between the M-Cp* symmetric stretching and the symmetric out-of-plane C-CH₃ deformation, the so called 'umbrella' mode (Table 11).

Table 6						
Symmetry	coordinates	of C	pM a	and	$M(CO)_3$	moieties

Point	group		Symmetry coordinate		t group	I	Symmetry coordinate
$\overline{C_s}$	C_{5v}	Number		$\overline{C_s}$	C_{5v}	Number	-
СрМ	moiety	,					
A'	a ₁	1	$5^{-1/2}(r_1+r_2+r_3+r_4+r_5)$				
	a_1	2	$5^{-1/2}(R_1+R_2+R_3+R_4+R_5)$				
	a_1	3	$5^{-1/2}(\rho_1 + \rho_2 + \rho_3 + \rho_4 + \rho_5)$				
				A''	a_2	4	$10^{-1/2}(\beta_1 - \beta_2 + \beta_3 - \beta_4 + \beta_5 - \beta_6 + \beta_7 - \beta_8 + \beta_9 - \beta_{10})$
	e ₁	5a	$Ar_1 + Br_2 - Cr_3 - Cr_4 + Br_5$		e ₁	5b	$Er_{2} + Dr_{3} - Dr_{4} - Er_{5}$
	e ₁	6a	$CR_1 - BR_2 - AR_3 - BR_4 + CR_5$		e_1	6b	$DR_1 + ER_2 - ER_4 - DR_5$
	e ₁	7a	$2^{-1/2}(E\beta_3 - E\beta_4 + D\beta_5 - D\beta_6 - D\beta_7)$		e ₁	7b	$2^{-1/2}(A\beta_1 - A\beta_2 + B\beta_3 - B\beta_4 - C\beta_5 + C\beta_6 - C\beta_7)$
		_	$+ D\beta_8 - E\beta_9 + E\beta_{10}$				$+ C\beta_8 + B\beta_9 - B\beta_{10}$
	e ₁	8a	$A\rho_1 + B\rho_2 - C\rho_3 - C\rho_4 + C\rho_5$		e ₁	8b	$E\rho_2 + D\rho_3 - D\rho_4 - E\rho_5$
	e_2	9a	$Ar_1 - Cr_2 + Br_3 + Br_4 - Cr_5$		e ₂	9b	$Dr_2 - Er_3 + Er_4 - Dr_5$
	e ₂	10a	$BR_1 - CR_2 + AR_3 - CR_4 + BR_5$		e ₂	10b	$ER_1 - DR_2 + DR_4 - ER_5$
	e ₂	11a	$\frac{2^{-1/2}(D\beta_3 - D\beta_4 - E\beta_5 + E\beta_6 + E\beta_7 - E\beta_8}{-D\beta_9 + D\beta_{10}}$		e_2	11b	$\frac{2^{-1/2}(A\beta_1 - A\beta_2 - C\beta_3 + C\beta_4 + B\beta_5 - B\beta_6 + B\beta_7}{-B\beta_8 - C\beta_9 + C\beta_{10}}$
	e_2	12a	$A\alpha_1 - C\alpha_2 + B\alpha_3 + B\alpha_4 - C\alpha_5$		e_2	12b	$D\alpha_2 - E\alpha_3 + E\alpha_4 - D\alpha_5$
	e ₂	13a	$A\rho_{1} - C\rho_{2} + B\rho_{3} + B\rho_{4} - C\rho_{5}$		e ₂	13b	$D\rho_2 - E\rho_3 + E\rho_4 - D\rho_5$
	e_2	14a	$E\chi_1 - D\chi_2 + D\chi_4 - E\chi_5$		e_2	14b	$B\chi_1 - C\chi_2 + A\chi_3 - C\chi_4 + B\chi_5$
	a_1	26	S				
	e ₁	27a	$E\tau_{2} + D\tau_{3} - D\tau_{4} - E\tau_{5}$		e_1	27b	$A\tau_1 + B\tau_2 - C\tau_3 - C\tau_4 + B\tau_5$
C_s	C_{3v}	Number		C_s	C_{3v}	Number	
M(C), mo	ietv					
A'	a ₁	15	$3^{-1/2}(d_1+d_2+d_3)$				
	a ₁	16	$3^{-1/2}(\varepsilon_1 + \varepsilon_2 + \varepsilon_3)$				
	a_1	17	$3^{-1/2}(\dot{D}_1 + D_2 + D_3)$				
	a_1	18	$6^{-1/2}(\omega_1 + \omega_2 + \omega_3 - \gamma_1 - \gamma_2 - \gamma_3)$				
	-			A''	a_2	19	$3^{-1/2}(\varepsilon_1' + \varepsilon_2' + \varepsilon_3')$
	e	20a	$6^{-1/2}(2d_1-d_2-d_3)$		e	20b	$2^{-1/2}(d_2 - d_3)$
	e	21a	$2^{-1/2}(\varepsilon_2'-\varepsilon_3')$		e	21b	$6^{-1/2}(2\varepsilon_1'-\varepsilon_2'-\varepsilon_3')$
	e	22a	$6^{-1/2}(2\varepsilon_1-\varepsilon_2-\varepsilon_3)$		e	22b	$2^{-1/2}(\epsilon_2 - \epsilon_3)$
	e	23a	$6^{-1/2}(2D_1-D_2-D_3)$		e	23b	$2^{-1/2}(D_2 - D_3)$
	e	24a	$6^{-1/2}(2\gamma_1 - \gamma_2 - \gamma_3)$		e	24b	$2^{-1/2}(\gamma_2 - \gamma_3)$
	e	25a	$6^{-1/2}(2\omega_1 - \omega_2 - \omega_3)$		e	25b	$2^{-1/2}(\omega_2 - \omega_3)$

A = 0.632456; B = 0.195440; C = 0.511667; D = 0.371748; E = 0.601501. The above list involves symmetry coordinates for $-\text{ReO}_3$ moiety as well, namely 17, 18, 23, 24 and 25 type of linear combinations.

Table 7				
Experimental and calculated	(NCA) fundamental	frequencies (cm ⁻¹)	of $Cp*Mn(CO)_3$	complex

Point g	roup			Cp*Mn(CO) ₃		Assignment	PED (%) ^a
C_s	C_{5v}	C_{3v}	Number	Experimental	Calculated		
A'	a,		1	1428	1427.9	$v(CC^*)^{b} + v(CC)$	53R + 47r
A'	a		2	593	584.6	$v(CC^*) + v(CC)$	54r + 46R
A'	a		3	205	200.9	$\gamma(CC^*)$	100ρ
Α″	a		4	549	547.3	$\beta(CC^*)$	100β
A'	e,		5a	1416	1421.8	$v(CC^*) + v(CC)$	$38r+33r+26\alpha+3\beta$
A′	e,		6a	803	803.8	$v(CC^*) + v(CC)$	$51R + 47r + 2\beta$
A'	e ₁		7a	210	213.6	$\beta(CC^*)$	$55\beta + 29R + 16r$
A'	e ₁		8a	145	153.2	$\gamma(CC^*)$	$98\rho + 2\tau$
A'	e,		9a	1373	1372.0	$v(CC^*) + v(CC)$	$76r+19R+3\alpha+2\beta$
A′	e		10a	1071	1070.3	$v(CC^*) + v(CC)$	$85R + 11\beta + 4r$
A′	e ₂		11 a	205	211.6	$\beta(CC^*)$	$97\beta + 3R$
A′	e ₂		12a	445	454.6	$\alpha(CCC)$	$50\alpha + 45r + 5R$
A'	e ₂		13a	109	112.8	$\gamma(CC^*)$	$85\rho + 15\gamma$
A′	e		14a	643	643.3	$\delta(CCC)$	$61\gamma + 39\rho$
A′	- 2	a,	15	2001	2004.1	$v_{\rm c}(\rm CO)$	92D + 8d
A′		e	20a	1917	1917.5	$v_{\rm os}(\rm CO)$	93D + 7d
A'		a,	16	676	675.1	δ (MnCO)	$88\varepsilon + 11\omega\gamma + 1d$
Α″		a	19	392	390.1	δ (MnCO)	$100\varepsilon'$
A′		e	21a	643	645.2	δ (MnCO)	$80\varepsilon' + 16\gamma + 4d$
A′		e	22a	545	552.1	δ (MnCO)	$79\varepsilon + 11d + 8\omega + 2\gamma$
A′		a,	17	501	500.3	$v_{\rm c}({\rm MnC})$	92d + 5S + 3D
A′		e	23a	498	495.2	v _{oc} (MnĆ)	$79d + 15\varepsilon + 6\varepsilon'$
A′		e	24a	133	126.1	δ (CMnC)	$81\gamma + 15\varepsilon' + 2\varepsilon + 2d$
A'		a	18	109	112.3	δ (CMnC)	$91\omega v + 7\varepsilon + 2d$
A'		e	25a	109	98.4	δ (CMnC)	$83\omega + 9d + 6\varepsilon + 2\gamma$
A'	a.	-	26	392	387.3	$v_{\rm c}({\rm MnCp^*})$	$94S+4d+2\varepsilon$
A'	e_1		27a	286	285.8	$v_{\rm as}({\rm MnCp}^*)$	$62\tau + 38\rho$

^a For internal coordinates notation see Fig. 1.

^b C*, C-atom of the CH₃-groups.

3.3. Force field of cyclopentadienyl ligands

It is always important to produce so called transferable force constants, which can be adopted to similar molecules or molecular fragments. Table 12 contains seven diagonal and four off-diagonal force constants of averaged values obtained for three Cp and three Cp* complexes. We believe that these sets of internal valence force constants can be used as starting force field for other 'half-sandwich' Cp or Cp* complexes.

3.4. Method of 'spectroscopic' masses of Cp and Cp* ligands

It has clearly been demonstrated that to perform a rigorous and complete force field calculation of Cp and Cp* complexes is not an easy problem. Therefore, we have made an attempt to calculate metal–ring stretching force constants based on a simple diatomic-approximation. If one uses molecular weights of Cp and Cp* and atomic weights of the metals, the approximate calculation gives force constants 2.11, 2.76 and 3.05 N cm⁻¹, whereas the rigorous calculation give 3.39, 3.66 and 4.03 N cm⁻¹ for CpMn(CO)₃, CpReO₃, and

CpRe(CO)₃, respectively. Generally, the above diatomic approximation underestimates strongly the metal–Cp stretching force constants. We have made an attempt to improve the accuracy of the approximate calculations by using so called 'spectroscopic' masses of Cp ligands, instead of their molecular weight. It has turned out that the spectroscopic mass of Cp ligand is higher than its molecular weight and slightly increases from the first (72.8), second (77.1) and third (83.2) rows of transition metals (Table 13) in the periodic table. The effective G-matrix element has been calculated as a sum of the inverse masses of Cp ligand and the $-M(CO)_3$ or $-ReO_3$ moieties of the complex.

Based on those estimated spectroscopic masses of Cp ligands we calculated metal-ligand force constants for CpNiNO [29] and CpV(CO)₄ [30] complexes. The other five Cp derivatives in Table 13 have been used as reference molecules to obtain 'spectroscopic' masses of Cp ligand.

We believe that force constants obtained by using 'spectroscopic' masses come close to the results of rigorous solutions. The method can be used as a fast and simple way to judge the approximate metal–Cp bond strength and the force constant can be used as a

Table 8

Experimental and calculated (NCA) fundamental frequencies (cm⁻¹) of Cp*Re(CO)₃ complex

Point g	group			Cp*Re(CO) ₃		Assignment	PED (%) ^a
$\overline{C_s}$	C_{5v}	C_{3v}	Number	Experimental	Calculated		
A'	a1		1	1421	1419.8	$v(CC^*)^{b} + v(CC)$	51R + 50r
\mathbf{A}'	a_1		2	587	588.2	$v(CC^*) + v(CC)$	51r + 50R
A′	a ₁		3	173	173.1	$\gamma(CC^*)$	100ρ
Α″	a ₂		4	544	546.3	$\beta(CC^*)$	100 <i>β</i>
A′	e ₁		5a	1408	1412.8	$v(CC^*) + v(CC)$	$59r + 40\alpha + 1r$
A′	e ₁		6a	795	796.3	$v(CC^*) + v(CC)$	$50R+43r+7\beta$
\mathbf{A}'	e ₁		7a	190	187.7	$\beta(CC^*)$	$78\beta + 21R + 1r$
A′	e ₁		8a	173	171.7	$\gamma(CC^*)$	$83\rho + 17\tau$
A′	e ₂		9a	1388	1382.2	$v(CC^*) + v(CC)$	$55r + 25\alpha + 18R + 2\beta$
\mathbf{A}'	e ₂		10a	1073	1078.8	$v(CC^*) + v(CC)$	$85R+13\beta+2r$
A′	e ₂		11a	185	186.8	$\beta(CC^*)$	$81\beta + 19R$
\mathbf{A}'	e ₂		12a	439	439.4	$\alpha(CCC)$	$73\alpha + 23r + 3R + 1\beta$
\mathbf{A}'	e ₂		13a	104	108.1	$\gamma(CC^*)$	$67\rho + 25\chi$
\mathbf{A}'	e ₂		14a	634	634.0	$\delta(\text{CCC})$	$64\chi + 36\rho$
\mathbf{A}'		a_1	15	2007	2007.1	$v_{\rm s}({\rm CO})$	92D + 8d
\mathbf{A}'		e	20a	1909	1909.0	$v_{as}(CO)$	93D + 7d
\mathbf{A}'		a ₁	16	615	616.9	δ (ReCO)	$77\varepsilon + 18\omega\gamma + 2d + 2S$
Α″		a ₂	19	381	380.1	δ (ReCO)	$100\varepsilon'$
\mathbf{A}'		e	21a	595	595.0	δ (ReCO)	$74\varepsilon' + 21\gamma + 5\varepsilon$
\mathbf{A}'		e	22a	495	494.4	δ (ReCO)	$71\varepsilon + 13d + 8\varepsilon' + 7\omega$
\mathbf{A}'		a ₁	17	507	513.9	$v_{\rm s}({\rm ReC})$	$91d + 4\varepsilon + 3D + 2S$
\mathbf{A}'		e	23a	515	518.2	$v_{as}(\text{ReC})$	$85d + 12\varepsilon + 2\omega + 1\varepsilon'$
\mathbf{A}'		e	24a	144	136.2	δ (CreC)	$77\gamma + 17\varepsilon' + 4\varepsilon + 1\omega$
\mathbf{A}'		a_1	18	104	124.3	δ (CreC)	$79\omega\gamma + 13\varepsilon + 7S$
\mathbf{A}'		e	25a	104	103.5	δ (CreC)	$90\omega + 10\varepsilon$
\mathbf{A}'	a_1		26	381	374.3	$v_{\rm s}({\rm ReCp}^*)$	$97S + 2\varepsilon$
\mathbf{A}'	e ₁		27a	280	279.6	$v_{as}(\text{ReCp}^*)$	$54\tau + 47\rho$

^a For internal coordinates notation see Fig. 1.

^b C*, C-atom of the CH₃-groups.

Table 9 Experimental and calculated (NCA) fundamental frequencies for $CpReO_3$ (cm⁻¹)

Point g	roup			CpReO ₃		Assignment	PED (%) ^a	
C_s	C_{5v}	C_{3v}	Number	Experimental	Calculated			
A'	a_1		1	3103	3098.6	v(CH)	98r + 2R	
A′	a ₁		2	1075	1076.6	v(CC)	91R + 9r	
A′	a ₁		3	835	835.0	γ (CH)	100ρ	
Α″	a ₂		4	1230	1229.9	β (CH)	100β	
A′	e ₁		5a	3015	3018.4	$\nu(CH)$	$99r + 1\alpha$	
A′	e ₁		6a	1429	1431.5	v(CC)	$78R + 21\beta + 1r$	
A′	e ₁		7a	1182	1182.6	β (CH)	$62\beta + 24R + 15\alpha$	
A′	e ₁		8a	855	855.0	γ (CH)	$95\rho + 5\tau$	
A′	e ₂		9a	3075	3074.4	$\nu(CH)$	$97r + 2R + 1\beta$	
A′	e ₂		10a	1329	1330.7	v(CC)	$74R + 17\alpha + 9\beta$	
A′	e ₂		11a	1018	1015.4	β (CH)	$52\beta + 46R + 2r$	
A′	e ₂		12a	958	949.9	$\alpha(CCC)$	$57\alpha + 27R + 16\beta + 2r$	
A′	e ₂		13a	1049	1047.8	γ (CH)	$93\rho + 7\chi$	
A′	e ₂		14a	589	589.0	$\delta(\text{CCC})$	$74\chi + 26\rho$	
A′		a_1	15	926	928.3	$v_{\rm s}({\rm ReO}_3)$	100 <i>d</i>	
A′		a ₁	16	384	388.3	$\delta_{\rm s}({\rm ReO}_3)$	$71\omega\gamma+29\rho$	
A′		e	17a	886	886.0	$v_{as}(\text{ReO}_3)$	100 <i>d</i>	
A′		e	18a	276	276.7	$\rho_{\rm r}({\rm ReO}_3)$	$92\gamma + 8\omega$	
A′		e	19a	193	202.3	$\delta_{as}(\text{ReO}_3)$	$92\omega + 8\gamma$	
A′	a_1		20	318	319.4	$v_{s}(\text{ReCp})$	$59S+41\omega\gamma$	
A′	e ₁		21a	375	374.9	$v_{as}(\text{ReCp})$	100τ	

^a For internal coordinates notation see Fig. 1.

Table 10							
Experimental a	and calculated	(NCA)	fundamental	frequencies	for	Cp*ReO ₃	(cm^{-1})

Point group		Cp*ReO ₃		Assignment	PED (%) ^a		
C _s	$C_s C_{5v} C_{3v}$ Number		Experimental Calculated				
A'	a ₁		1	1427	1426.9	$v(CC)^{b} + v(CC^{*})$	53 <i>R</i> +47 <i>r</i>
A′	a ₁		2	591	585.8	$v(CC^*) + v(CC)$	53r + 47R
A′	a ₁		3	183	179.0	$\gamma(CC^*)$	100ρ
Α″	a ₂		4	545	545.0	$\beta(CC^*)$	100β
A′	e ₁		5a	1407	1406.9	$v(CC) + v(CC^*)$	$64R+33r+3\beta$
A′	e ₁		6a	804	803.9	$v(CC) + v(CC^*)$	$48R + 44r + 8\beta$
\mathbf{A}'	e ₁		7a	205	205.2	$\beta(CC^*)$	$82\beta + 17R + 1r$
A′	e ₁		8a	122	121.7	$\gamma(CC^*)$	$92\rho + 8\chi$
A′	e ₂		9a	1366	1363.3	$v(CC^*) + \alpha(CCC)$	$57r+24\alpha+17R+2\beta$
\mathbf{A}'	e ₂		10a	1073	1069.5	v(CC)	$89R+8r+3\beta$
A′	e ₂		11a	183	193.3	$\beta(CC^*) + \nu(CC)$	$82\beta + 17R + 1\alpha$
A′	e ₂		12a	422	424.7	$\alpha(CCC)$	$74\alpha + 21r + 4R + 1\beta$
A′	e ₂		13a	109	108.8	$\gamma(CC^*)$	$99\rho + 1\chi$
A′	e ₂		14a	610	610.0	$\delta(CCC)$	$70\chi + 30\rho$
A′	2	a_1	15	918	917.9	$v_{\rm e}({\rm ReO}_3)$	100 <i>d</i>
A′		a_1	16	400	392.5	$\delta_{\rm s}({\rm ReO_3})$	$79\omega\gamma + 21S$
A′		e	17a	886	886.0	$v_{as}(\text{ReO}_3)$	100 <i>d</i>
A′		e	18a	296	296.8	$\rho_r(\text{ReO}_3)$	$95\gamma + 5\omega$
A′		e	19a	205	204.8	$\delta_{\rm as}({\rm ReO}_3)$	$.95\omega + 5\gamma$
A′	a_1		20	355	352.5	v (ReCp*)	$67S + 33\omega\gamma$
A′	e,		21a	340	340.0	$v_{as}(\text{ReCp}^*)$	$83\tau + 17\rho$

^a For internal coordinates notation see Fig. 1.

^b C*, C-atom of the CH₃-groups.

starting value for the refinement procedure of a full solution.

4. Conclusions

Table 11

Some important calculated force constants are presented in Table 10. From these data the following conclusions can be drawn. (a) The higher energy d orbitals of the heavier Re atom, which has a bigger atomic radius and is richer in electrons, allows a bigger overlap with the Cp ring orbitals than the Mn atom. This is reflected by the larger Re–Cp(Cp*) force constants compared with the Mn–Cp(Cp*) force constants. In CpM(CO)₃ complexes, the M–C force constants (both M–Cp and M–CO) are always larger in the case of Re than Mn-complexes. (b) Increasing the Re oxida-

Some characteristic force constants of Cp(Cp*)ML₃ complexes

tion number in the trioxo complexes (Re(VII)) results in the concomitant weakening of the σ -coordination. Since the ReO₃ moiety is strongly electron-withdrawing, the metal-ring bond is weakened in comparison to the carbonyl complexes. This is evidenced by the larger K(MCp) force constants for the CpRe(CO)₃ complex relative to $CpReO_3$. In the case of the Cp^* complexes, this weakening effect is more significant. (c) CH₃ groups increase the electron-density of the Cp ring, which has a direct consequence of increasing the charge on the metal. Therefore, the metal-ligand interaction becomes stronger, which is indicated by the larger force constants for Cp* complexes relative to Cp ones. Additionally the Re(Mn)-CO bond order increases, and the C=O bond order decreases, which is in accordance with the larger K(Re(Mn)-CO) and smaller K(C=O) force constants for Cp* complexes. (d) The larger force con-

Force constant	Internal coordinate	CpMn(CO) ₃	Cp*Mn(CO) ₃	CpRe(CO) ₃	Cp*Re(CO) ₃	CpReO ₃	Cp*ReO ₃
Stretching ^a							
K(CC)	R	7.52	7.74	7.43	6.67	7.25	6.67
K(CH(C*)) ^b	r	5.20	5.25	5.13	5.34	4.95	5.34
K(CD) °	S	3.39	6.85	4.03	6.91	3.66	3.81
K(MC*) ^d	d	2.80	3.63	3.62	3.86	_	_
K(ReO)	ď					6.99	6.99
K(CO)	D	15.97	15.85	15.89	15.69	-	_
Stretching-stretching	a						
F(CC,CC)	$R_1R_2^{e}$	0.66	0.78	0.74	0.84	0.59	0.84
F(CC,C'C')	$R_1 R_3^{\text{f}}$	-0.85	-0.68	-0.32	-0.73	-0.75	-0.73
F(MC*, MC*)	dd	0.02	0.03	0.09	0.18		
F(ReO,ReO)	d'd'					0.36	0.36
F(CO,CO)	DD	0.17	0.18	0.23	0.24		
$F(CC,CH(C^*))$	Rr	-0.28	-0.24	-0.26	-0.25	-0.42	-0.43
Bending ^g							
H(CCC)	α	1.62	1.32	1.42	0.91	1.88	0.86
H(CCH(C*))	β	0.39	0.46	0.33	0.43	0.51	0.45
H(DMC*)	ω	0.34	0.62	0.62	0.70		
H(DReO)	ω'					1.11	1.20
H(C*MC*)	γ	0.49	0.76	0.76	0.88		
H(OReO)	γ'					1.09	1.14
H(MCO) _{ip} ^g	3	0.79	0.70	0.81	0.71	_	_
H(MCO) _{op} ^h	ε'	0.53	0.60	0.47	0.54	_	_
H(CCCH(C*))	ρ	0.36	0.39	0.27	0.33	0.54	0.20
H(CCCC)	χ	0.63	0.38	0.66	0.49	0.62	0.50
Cp tilt	τ	0.31	0.41	0.27	0.41	0.27	0.37
Bending-bending ⁱ							
h(DReO,DReO)	$\omega'\omega'$					0.25	0.34
h(OReO,OReO)	$\gamma'\gamma'$					0.33	0.26

 $a 10^2 N m^{-1}$.

- ^b C*, C-atom of the CH₃-groups.
- ^c D, 'dummy' atom in the geometric center of C₅-ring.
- ^d C*, C-atom which belongs to CO-groups.
- ^e R_1R_2 , adjacent C–C bonds.
- ^f R_1R_3 , opposite C–C bonds.
- ^g ip, M–C–O in–plane linear deformation.
- ^h op, M-C-O linear deformation, perpendicular to the plane.
- ⁱ 10⁻¹⁸ N m rad⁻².

Table 12 Averaged internal valence force constants for Cp and Cp* ligands

Force constant	orce constant Internal coordinate		$C_5(CH_3)_5^-$
Stretching ^a			
K(CC)	R	7.52	7.03
K(CH(C*)) ^b	r	5.10	5.31
Stretching-stretchi	ng ^a		
F(CC,CC)	$R_1 R_2^{b}$	0.66	0.82
F(CC,C'C')	$R_1 R_3$ °	-0.64	-0.71
F(CC,CH(C*))	Rr	-0.32	-0.30
Bending ^d			
H(CCC)	α	1.64	1.03
H(CCH(C*))	β	0.41	0.45
Out of plane, torsi	onal		
H(CCCH(C*))	ρ	0.39	0.31
H(CCCC)	χ	0.64	0.46
Cp tilt	τ	0.28	0.40
Stretching-bending	e e		
h(CC, CCC) f	Rα	0.80	0.92

 $^{a} 10^{2} N m^{-1}$.

^b R_1R_2 , adjacent C–C bonds.

^c R_1R_3 , opposite C–C bonds.

 $^{d} 10^{-18} \text{ N m rad}^{-2}$.

e 10⁻⁸ N m rad⁻¹.

^f $R_1\alpha_5$, interaction of α_i with R_i having common bonds.

stants for the Cp* complexes relative to Cp ones can be interpreted as a measure of the molecules' stability. As in the case of oxo derivatives, the smaller force constant obtained for CpReO₃ (3.66×10^2 N m⁻¹) can be a good explanation of its lower stability in comparison to Cp*ReO₃ (3.81×10^2 N m⁻¹). (e) Generally, it can be concluded, that due to the metal–ligand bond strengthening, the ring force constants become smaller (both for the in-plane and out-of-plane coordinates). Averaged 11 characteristic force constants have been selected for Cp and Cp* ligands, which can be transferred to othercomplexes. By introducing effective 'spectroscopic' masses for Cp ligand, metal–Cp stretching force constants can be estimated by a very simple ('diatomic') calculation.

Acknowledgements

This research was generously supported by operating and equipment grants from the following agencies: Hungarian Academy of Sciences (OTKA, T 025278 and T 016707, AKP 9793-2, 4/29); COST D-5 Brussels, D-246/91, TÉT D-46/98, the Fonds der Chemischen Industrie (financial support). É.B. acknowledges the Alexander von Humboldt Foundation for a fellowship. J.M. is indebted to Alexander von Humboldt Foundation for a Research Award. Thanks to P.L. Goggin for valuable discussions.

References

- Recent reviews: (a) C.C. Romão, F.E. Kühn, W.A. Herrmann, Chem. Rev. 97 (1997) 3197;
 (b) W.A. Herrmann, F.E. Kühn, Acc. Chem. Res. 30 (1997) 169;
 (c) F.E. Kühn, R.W. Fischer, W.A. Herrmann, Chem. Unserer Zeit. 33 (1999) 192;
 (d) F.E. Kühn, W.A. Herrmann, In: B. Meunier (Ed.), Structure and Bonding, Vol. 97, Springer, Heidelberg, 2000, p. 213;
 (e) F.E. Kühn, W.A. Herrmann, Chemtracts-Org. Chem. 14 (2001) 59.
 W.A. Herrmann, J.G. Kuchler, W. Wagner, J.K. Felixberger, E. Herdtweck Angew Chem 100 (1988) 420; Angew Chem Int
- Herdtweck, Angew. Chem. 100 (1988) 420; Angew. Chem. Int. Ed. Engl. 27 (1988) 394.
- [3] (a) S. Wolowiec, J. Kochi, Inorg. Chem. 30 (1991) 1215;
 (b) W.A. Herrmann, J.G. Kuchler, G. Weichselbaumer, E. Herdtweck, P.J. Kiprof, J. Organomet. Chem. 372 (1989) 351.
- [4] J. Mink, G. Keresztury, A. Stirling, W.A. Herrmann, Spectrochim. Acta 50A (1994) 2039.
- [5] (a) W.A. Herrmann, E. Voss, M. Flöel, J. Organomet. Chem. 297 (1985) C5;
 (b) W.A. Herrmann, M. Flöel, J. Kulpe, J.K. Felixberger, E. Herdtweck, J. Organomet. Chem. 355 (1988) 297.

Table 13

Calculated metal-ligand stretching force constants using 'spectroscopic' masses of Cp ligands

Molecule	'Spectroscopic' mass of Cp	Effective G matrix elements	Symmetric Cp–M stretching (cm ⁻¹)	Calculated Cp–M force constants (N cm ⁻¹)		
				Approximate	Full solution	
CpNiNO	72.8	0.024972	322 ^a	2.45	_	
$CpV(CO)_4$	72.8	0.019871	329 ^ь	3.21	_	
CpMo(CO) ₂ NO	77.1	0.018465	324 °	3.35	3.36	
CpMn(CO) ₃	72.8	0.020931	347	3.38	3.39	
$C_5D_5Mn(CO)_3$	79.8	0.019726	337	3.39	3.39	
CpReO ₃	83.2	0.016293	318	3.65	3.66	
$CpRe(CO)_3$	83.2	0.015723	328	4.03	4.03	

^a Frequency taken from Ref. [29].

^b Ref. [30].

° Ref. [31].

[6] (a) W.A. Herrmann, F.E. Kühn, C.C. Romão, H. Tran Huy, M. Wang, R.W. Fischer, W. Scherer, P. Kiprof, Chem. Ber. 126 (1993) 45;

(b) W.A. Herrmann, F.E. Kühn, C.C. Romão, H. Tran Huy, J. Organomet. Chem. 481 (1994) 227;

- (c) W.A. Herrmann, F.E. Kühn, C.C. Romão, J. Organomet. Chem. 489 (1995) C56;
- (d) W.A. Herrmann, F.E. Kühn, C.C. Romão, J. Organomet. Chem. 495 (1995) 209;

(e) F.E. Kühn, J. Mink, W.A. Herrmann, Chem. Ber. 130 (1997) 295.

- [7] (a) F.E. Kühn, A.M. Santos, I.S. Gonçalves, C.C. Romão, A.D. Lopes, Appl. Organomet. Chem. 15 (2001) 43;
 (b) F.E. Kühn, A.M. Santos, A.D. Lopes, I.S. Gonçalves, E. Herdtweck, C.C. Romão, J. Mol. Catal. A 164 (2000) 25;
 (c) G.N. Schrauzer, L.A. Hughes, N. Strampach, P.R. Robinson, E.O. Schlemper, Organometallics 1 (1982) 44;
 (d) B. Heyn, R. Hoffmann, Z. Chem. 16 (1975) 195.
- [8] (a) C. Zhang, X. Zhang, N.H. Lui, G.N. Schrauzer, Organometallics 9 (1990) 1307;
 (b) C. Zhang, E.O. Schlemper, G.N. Schrauzer, Organometallics

9 (1990) 1016. [9] (a) H.P. Fritz, Adv. Organomet. Chem. 1 (1964) 239;

- (b) V.T. Aleksanyan, in: J.R. Durig (Ed.), Vibrational Spectra and Structure, vol. 11, Elsevier, Amsterdam, 1982, p. 107;
 (c) V.T. Aleksanyan, B.V. Lokshin, in: Vibrational Spectra of Transition Metal π-complexes, Series Molecular Structure and Chemical Bond, vol. 5, VINITI, Moscow, 1976, p. 5;
 (d) E. Diana, R. Rosetti, P.L. Stanghellini, S.F.A. Kettle, Inorg. Chem. 36 (1997) 382.
- [10] E. Bencze, B.V. Lokshin, J. Mink, F.E. Kühn, W.A. Herrmann, J. Organomet. Chem. 627 (2001) 55.
- [11] K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds—Part B, fifth ed., Wiley, New York, 1997, p. 286.
- [12] A. Bérces, T. Ziegler, L. Fan, J. Phys. Chem. 98 (1994) 1584.
- [13] D.J. Parker, J. Chem. Soc. Dalton Trans. (1974) 155.
- [14] B.V. Lokshin, Z.S. Klemenkova, Y.V. Makarov, Spectrochim. Acta 28A (1972) 2209.
- [15] G. Diaz, A.H. Klahn, Spectrosc. Lett. 23 (1990) 87.

- [16] E.R. Lippincott, J. Xavier, D. Steele, J. Am. Chem. Soc. 83 (1961) 2262.
- [17] V.T. Aleksanyan, B.V. Lokshin, G.K. Borisov, G.G. Devyatykh, A.S. Smirnov, R.V. Nazarova, J.A. Koningstein, B.F. Gächter, J. Organomet. Chem. 124 (1977) 293.
- [18] I.S. Butler, A.E. Fenster, J. Organomet. Chem. 51 (1973) 307.
- [19] S.M. Howdle, P. Grebenic, R.N. Perutz, M. Poliakoff, J. Chem. Soc. Chem. Commun. (1989) 1517.
- [20] (a) A.K. Burrell, F.A. Cotton, L.M. Daniels, V. Petricek, Inorg. Chem. 34 (1995) 4253;
 (b) N. Masciocchi, P. Cairati, F. Saiano, A. Sironi, Inorg. Chem. 35 (1996) 4060;
 (c) W.A. Herrmann, P. Kiprof, K. Rypdal, J. Tremmel, R. Blom, R. Alberto, J. Behm, R.W. Albach, H. Bock, B. Solouki, J. Mink, D. Lichtenberger, N.E. Gruhn, J. Am. Chem. Soc. 113 (1991) 6527.
 [21] R.C. Hemond, R.P. Hughes, H.R. Locker, Organometallics 5
- [21] R.C. Hemond, R.P. Hughes, H.R. Locker, Organometallics 5 (1986) 2391.
- [22] W.A. Herrmann, M. Taillefer, C. de Méric de Bellefon, J. Behm, Inorg. Chem. 30 (1991) 3247.
- [23] (a) F.E. Kühn, W.A. Herrmann, R. Hahn, M. Elison, J. Blümel, E. Herdtweck, Organometallics 13 (1994) 1601;
 (b) W.A. Herrmann, F.E. Kühn, D.A. Fiedler, M. Mattner, M. Geisberger, H. Kunkeley, A. Vogler, S. Steenken, Organometallics 14 (1995) 5377.
- [24] W.A. Herrmann, J.D.G. Correia, F.E. Kühn, G.R.J. Artus, C.C. Romão, Chem. Eur. J. 2 (1996) 168.
- [25] P.J. Fritzpatrick, Y. Le Page, J. Sedman, I.S. Butler, Inorg. Chem. 20 (1981) 2852.
- [26] P.J. Fritzpatrick, Y. Le Page, I.S. Butler, Acta Crystallogr., Sect. B 37 (1981) 1052.
- [27] S. Fortier, M.C. Baird, K.F. Preston, J.R. Morton, T. Ziegler, T.J. Jaeger, W.C. Watkins, J.H. MacNeil, K.A. Watson, K. Hensel, Y. Le Page, J.-P. Charland, A.J. Williams, J. Am. Chem. Soc. 113 (1991) 542.
- [28] Y. Huang, I.S. Butler, D.F.R. Gilson, Inorg. Chem. 31 (1992) 4762.
- [29] G. Paliani, R. Cataliotti, A. Poletti, A. Fottani, J. Chem. Soc. Dalton Trans. (1972) 1714.
- [30] J.R. During, R.B. King, L.W. Houk, A.L. Marston, J. Organomet. Chem. 16 (1969) 425.
- [31] P.J. Fitzpatrick, Y. Le Page, J. Sedman, I.S. Butler, Inorg. Chem. 20 (1981) 2852.